
QTL-mapping with Random Forest

Jan Grossbach

April 12, 2017

1 Introduction

Inter-individual variation in a quantitative trait such as body height, crop yield
or gene expression can partly be explained by the differences in genotypes. A
host of machine learning approaches attempt to do this by learning which ge-
netic information can be reliably used to predict the expression of a trait. A
genetic variant that regulates such a quantitative trait is referred to as a quan-
titative trait locus (QTL). One of these approaches is Random Forest (RF). RF
generates decision trees that group samples with a similar phenotype together
by separating them based on genetic predictors that correlate with the trait.
RF differs from linear methods in that it uses markers sequentially to separate
increasingly smaller groups of samples which allows RF to account for complex
interactions between genetic predictors. In the following the R-implementation
of Random Forest randomForest is used. Other packages that provide output
in the same format are suitable as well. In addition to the functions from ran-
domForest some functions supplied with the accompanying R-package are used.

2 Preparing the data

The data used in this tutorial is the expression of SPNCRNA.1571 in 46 fission
yeast strains. All data is provided in the same folder as this tutorial. Several
pieces of information are required as input to determine if a trait is significantly
regulated by a specific locus. Aside from the trait value for each individual
we need to know its genotype. This information can be parsed to a format
suitable for the mapping functions supplied here with preMap. The genotype
should be provided as a matrix with one column per marker and one row for
each unique genotype. Genotypes have to be supplied as binary information
(0,1,NA). The phenotypical data is to be provided either as a vector (if only one
trait should be mapped) or as a matrix with one row per trait. In addition to
the genotype and phenotype, a vector specifying which sample belongs to which
genotype is required. An example for this can be found below. This approach
is designed to be able to handle missing allele-information. It is important that
any missing genotype-data are set to NA (and not e.g. 0.5). It is possible
to supply replicate measurements for the same trait and strain/genotype. We

1

advise against this since it increases the runtime of the method without adding
new information. An alternative would be to average the available data points
for the same strains to decrease noise in the data. To account for the heritability
of a trait all permutations are done by systematically permuting the associations
of phenotype and genotype. If this is not possible due to a different number of
replicates per genotype the final p-values may not reflect the true significance of
the association between a marker and a trait. preMap combines the genotype-
and phenotype-information and handles the preprocessing of the genotype and
the phenotype. In this tutorial we deal with the most basic mapping task, where
a single trait with one condition and with no extra replicates is analyzed. The
code used in this tutorial can also be found in tutorialCode.R to avoid pointless
copying and pasting.

> library(RFQTL)

> genotype <- as.matrix(read.table("genotype.tsv",row.names = 1))

> phenotype <- read.table(file = "phenotype.tsv")

> strainNames <- phenotype[,1]

> phenotype <- phenotype[,2]

> sampleInfo <- sapply(strainNames,FUN=function(x){

+ which(rownames(genotype)==x)

+ })

> mappingData <- preMap(genotype=genotype,

+ phenotype=phenotype,

+ sampleInfo=sampleInfo,

+ scale=T)

3 Mapping the trait

rfMapper is used to explain variance within the phenotype with differences in
the genotypes. It returnes a vector of scores that indicate how close a trait and
a marker are linked. All necessary data for the mapping is contained in the
object generated with preMap. The number of trees that is generated can be
controlled with the parameters ntree and nforest. Note that the final number
of decision trees is the product of both values.

> library(randomForest)

> realScores <- rfMapper(mappingData = mappingData,

+ permute = F,

+ nforest = 100,

+ ntree = 150)

To assess the significance of an association between a trait and a marker
rfMapper has to run twice: once to assess how important the marker is to
explain the observed trait values and once to generate a null distribution of
marker importances to which the real importance can be compared. The pa-
rameter permute controls specifies if the function should map the real trait or

2

generate a null distribution. If permute=TRUE, i.e. if a null distribution should
be generated, the nPermutations parameter specifies how many permutations
should be performed. If more than one trait were preprocessed with preMap

at the same time, the trait which should be mapped has to be specified with
nTrait.

> permutedScores <- rfMapper(mappingData = mappingData,

+ permute = T,

+ nforest = 100,

+ ntree = 150,

+ nPermutations=10,

+ file="perm1.RData",

+ nCl=4,

+ clType="SOCK")

Since many time-consuming permutations are necessary to accurately esti-
mate the significance of a linkage, a folder with precomputed permutations is
included in the home-directory of this tutorial. The file-parameter specifies a
path where the output should be stored as a .RData-object. This is only true
for permutations, the real scores are returned by the function. rfMapper can
be used in parallel. The type of cluster that should be created has to be speci-
fied as clType and the number of cores as nCl. The cluster-functions from the
snow-package are used, therefore only cluster-types implemented in snow can be
used.

4 Estimating the significance of marker/trait-
linkages

Predictor-scores can be compared to predictor-specific empirical null distribu-
tions with the pEst-function. The parameter path specifies a directory from
which pEst loads all RData-files used to determine the empirical p-value of a
specific marker. The parameter markersPerIteration does not change the re-
sults in any way but it specifies for how many markers the null distributions
should be loaded into the working memory at a time. A higher value for this
parameter reduces the computation time at the cost of higher memory-usage.
If the parameter printProg is set to TRUE, the progress will be printed to the
screen. Any correction for multiple testing implemented in p.adjust may be
specified as pCorrection. The output will then consist of p-values that are
corrected for multiple testing.

> pValues <- pEst(path="permutations_prepared/",

+ scores=realScores,

+ markersPerIteration = 350,

+ printProg = T,

+ pCorrection = "fdr")

3

[1] 350

[1] 688

5 Joining significant markers to QTL-regions

Markers that are significantly regulating the same trait and are in linkage dise-
quilibrium likely belong to the same QTL. QTLgrouper is a function that further
processes the significant marker-trait-linkages. Directly neighboring significant
markers are assumed to belong to the same QTL. Markers that are separated by
not more than a predefined amount of other markers and at the same time show
sufficient correlation are also assumed to belong to the same QTL. If regions
defined in this fashion contain markers that show strong correlation with mark-
ers in other distinct significant regions, these regions are assumed to belong to
the same QTL. A QTL defined by QTLgrouper can therefore contain distinct
regions which are separated by genomic regions not belonging to the QTL. The
results are returned as a list-object where each entry corresponds to one QTL.

> pValuesX <- pValues[mappingData$genotype2group]

> chrVec <- read.csv("chrVec.tsv")[,1]

> QTL_list <- QTLgrouper(pmat = pValuesX,

+ sigThreshold = 0.1,

+ corThreshold = 0.8,

+ distThreshold = 9,

+ genotype = genotype,

+ chrVec = chrVec)

6 Storing results in the .qtl format

The objects returned by QTLgrouper can be saved in a format that is easier to
navigate by eye. The function writeQTL can be used to generate .qtl-files that
contain all QTL for one trait. writeQTL automatically generates as many files
as there are different traits with significant QTL. These files can be read with
readQTL.

> markerPositions <- read.table("markerPositions.tsv",sep="\t",header=T)

> writeQTL(QTLlist = QTL_list,traitNames = "SPNCRNA.1571",markerPositions = markerPositions,path="myResults.qtl")

> qtl <- readQTL(path = "myResults.qtl")

4

